DEPHOSTATIN, A NOVEL PROTEIN TYROSINE PHOSPHATASE INHIBITOR PRODUCED BY *Streptomyces*

II. STRUCTURE DETERMINATION

HIDEAKI KAKEYA, MASAYA IMOTO, YOSHIKAZU TAKAHASHI[†], HIROSHI NAGANAWA[†], TOMIO TAKEUCHI[†], and Kazuo Umezawa^{*}

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan [†]Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication July 2, 1993)

Dephostatin, a novel tyrosine phosphatase inhibitor, was isolated from the culture broth of *Streptomyces* sp. MJ742-NF5. The structure was elucidated to be 2-(*N*-methyl-*N*-nitroso)hydroquinone by spectral and chemical analyses of dephostatin and its derivatives.

Dephostatin (1), a novel tyrosine phosphatase inhibitor, was isolated from the culture broth of *Streptomyces* sp. MJ742-NF5. The taxonomy, fermentation, isolation, and biological activity of 1 was reported previously¹⁾. In this paper, we describe the physico-chemical properties and the structure of dephostatin.

1 was obtained as a colorless powder. The physico-chemical properties of 1 are summarized in Table 1. The FAB-MS spectrum of 1 afforded m/z 169 (M+H)⁺ and 167 (M-H)⁻. The UV spectra of 1 showed absorption maxima at 305 nm (ε 3,280) in MeOH, 305 nm (ε 3,450) in 0.1 N HCl-MeOH,

	Dephostatin (1)	2
Appearance	Colorless powder	Colorless needles
MP	$104 \sim 107^{\circ}C$	131°C
Molecular formula	$C_7H_8N_2O_3$	$C_7H_{11}NO_2$
FAB-MS (Positive) m/z	$169 (M + H)^+$, <u>-</u>
(Negative) m/z	$167 (M - H)^{-1}$	
HREI-MS Found:		141.0794
Calcd:		141.0789
Elemental analysis Found:	C 49.13, H, 4.64, N 13.80%	C 59.41, H 7.89, N 9.64, O 22.63%
Calcd:	C 50.00, H 4.80, N 16.66%	C 59.56, H 7.85, N 9.92, O 22.67%
UV λ_{\max}^{MeOH} nm (ε)	305 (3,280)	290 (16,215)
$\lambda_{\max}^{MeOH-HCl}$ nm (ε)	305 (3,450)	280 (14,100)
$\hat{\lambda}_{\max}^{MeOH-NaOH}$ nm (ε)	314 (3,175)	290 (16,215)
IR $v_{\rm max}$ (KBr) cm ⁻¹	3235, 1540, 1475, 1420, 1355, 1275, 1235, 1080, 850, 810, 790, 625	3345, 1580, 1540, 1245, 1210, 1100, 1080, 852, 800
Rf value ^a CHCl ₃ - MeOH (5:1)	0.56	0.21
Solubility Soluble:	MeOH, acetone	MeOH, acetone
Insoluble:	H_2O , <i>n</i> -hexane	H_2O , <i>n</i> -hexane

Table 1. Physico-chemical properties of dephostatin (1) and 2.

^a Silica gel TLC (Merck 60F₂₅₄).

	Dephostatin (1)			2		
No.	¹³ C ^a	¹ H ^b	No.	$^{13}\mathrm{C}^{\mathrm{a}}$	¹ H ^b	
1, 4	144.5, 151.5		1	67.8	4.41 (1H, dd, $J=4.0$, 11.2 Hz)	
2	131.2		2	167.8	· · · · · · ·	
3, 5, 6	113.8, 117.3, 118.4	6.80~6.98 (3H, m)	3	94.2	4.76 (1H, s)	
N-CH ₃	34.5	3.35 (3H, s)	4	194.2		
1,4-OH		8.18 (1H, brs),	5	35.9	$2.20 \sim 2.23$ (2H, m)	
		8.41 (1H, brs)	6	33.0	1.85 (1H, m).	
					2.16 (1H, m)	
			N-CH ₃	29.2	2.76 (3H, d)	
			OH, NH		4.97 (1H, brs),	
					6.36 (1H, brs)	

Table 2. ¹³C and ¹H NMR assignments for dephostatin (1) and 2.

^a Measured in acetone- d_6 at 67.5 MHz; chemical shifts in ppm from TMS.

^b Measured in acetone- d_6 at 270 MHz; chemical shifts in ppm from TMS.

Fig. 2. Partial structures of **2** from spin decoupling (a) and ¹H NMR, ¹³C NMR, and UV spectra (b).

•: Nonproton atom.

Fig. 3. ¹H-¹³C correlation by HMBC experiment of 2.

and 314 nm (ε 3,175) in 0.1 N NaOH - MeOH. Its IR spectrum (KBr) revealed absorptions at 3235, 1540, 1475, 1420, 1355, 1275, 1235, 1080, 850, 810, 790, and 625 cm⁻¹. The ¹H NMR spectrum of 1 in acetone- d_6 at 270 MHz showed eight protons; a signal at δ 3.35 (3H, s), aromatic protons at δ 6.80 ~ 6.98 (3H, m), and the presence of two broad signals at δ 8.18 (1H, br s) and 8.41 (1H, br s), which disappeared by the addition of deuterium oxide. The ¹³C NMR spectrum of 1 revealed the presence of 7 carbon atoms (δ 34.5, 113.8, 117.3, 118.4, 131.2, 144.5, and 151.5).

1 was unstable in solvents such as MeOH and CH_3CN ; especially, it easily decomposed in acidic media. Then, 1 was converted to 2 by catalytic hydrogenation with palladium on carbon in EtOH.

2 was obtained as colorless needles, and shown to be more stable than **1**. The molecular formula of **2** was determined to be $C_7H_{11}NO_2$ from the result of HREI-MS (Found: m/z 141.0794, Calcd: m/z 141.0789) and elemental analysis (Found: C 59.41, H 7.89, N 9.64, O 22.63, Calcd: C 59.56, H 7.85, N 9.92, O 22.67). The absorption band at 3345 cm⁻¹ in the IR spectrum of **2** suggested the presence of hydroxyl and amino groups. UV absorption of **2** at 290 nm (ε 16,215) suggested the presence of α,β -unsaturated ketone chromophore. The physico-chemical properties and NMR data of **2** are summarized in Tables 1 and 2, respectively. The ¹H and ¹³C NMR spectra of **2** revealed the presence of 11 protons and 7 carbon atoms in the molecule. The partial structure (Fig. 2a) was obtained from a spin-decoupling experiment. The ¹H NMR, ¹³C NMR, and UV spectra afforded another partial structure (Fig. 2b). Moreover, the partial structures and unsaturation number suggested that **2** was a cyclohexenone derivative. The structure of **2** was defined by heteronuclear multiple-bond correlation (HMBC) spectrum (Fig. 3). The

methyl protons ($\delta_{\rm H}$ 2.76) showed their coupling to C-2, suggesting that a methylamino group attaches to C-2. The olefinic proton of 3-CH ($\delta_{\rm H}$ 4.76) showed coupling to C-1 and C-5. The methylene protons of 6-CH₂ ($\delta_{\rm H}$ 1.85, 2.15) coupled to C-1, C-2, C-4, and C-5. The methylene protons of 5-CH₂ ($\delta_{\rm H}$ 2.20~ 2.23) coupled to C-1, C-4, and C-6. From these data, the structure of **2** was determined to be as shown in Fig. 3.

Based on the structure of 2, 1 was elucidated to be a 1,2,4-trisubstituted benzene derivative. Acetylation of 1 afforded dephostatin diacetate (3) in high yield (Fig. 4). In particular, the ¹H chemical shift of the two acetyl groups ($\delta_{\rm H}$ 2.23, 2.32) and strong IR absorption band at 1765 cm⁻¹ are Fig. 4. Scheme for hydrogenation (a) and acetylation (b) of dephostatin (1). Explanations in text.

a) H₂, 10% Pd-C-EtOH; b) acetic anhydride-pyridine.

characteristic of phenolic acetate. The structure of 2 and 3 indicated that 1 possessed two phenolic OH groups at the 1,4 positions and N-methyl group at the 2 position. Moreover, FAB-MS $[m/z \ 169 \ (M+H)^+$ and 139 $(M+H-NO)^+]$ and IR $(1475 \ cm^{-1})$ spectra showed that 1 possessed a nitrosoamine group.²⁾ The FAB-MS $[m/z \ 253 \ (M+H)^+$ and 223 $(M+H-NO)^+]$ and IR $(1460 \ cm^{-1})$ spectra of 3 showed that 3 would also possess a nitrosoamine group. The FAB-MS and IR spectra of 2 did not show the ion peak $(M+H-NO)^+$ and absorption peak arising from a nitrosoamine group. These results suggested that the reductive cleavage of N-nitroso bond occured in 2 and that 1 possessed an N-methyl-N-nitroso group at the 2 position.

Thus, the structure of dephostatin (1) was confirmed to be 2-(*N*-methyl-*N*-nitroso)hydroquinone (Fig. 1). The ¹H and ¹³C NMR déta of 1 are shown in Table 2.

Experimental

General

MP's were determined with a micro mp apparatus, MP-3 (Yanagimoto), and were uncorrected. UV spectra were measured on a Hitachi U-3210 spectrophotometer. IR spectra were measured with a Hitachi I-5020 FT-IR spectrometer. FAB-MS and EI-MS were taken by a JEOL JMS-SX 102 and a Hitachi M-80H mass spectrometer, respectively. NMR spectra were recorded with JEOL JNM-EX 270 and JEOL JNM-GX400 NMR spectrometers.

Hydrogenation of 1

A solution of 1 (7.0 mg, 0.042 mmol) in EtOH (3 ml) was hydrogenated over 10% Pd-C (2 mg) under an atmosphere of hydrogen at room temperature for 4 hours. The mixture was filtered, and the filtrate was concentrated *in vacuo*. The oily residue was chromatographed on a silica gel column (Merck silica gel 60), eluting with CHCl₃-MeOH (5:1). Fractions containing the major product were concentrated *in vacuo*, and the residue was applied on Sephadex LH-20. After elution with MeOH, the pure fractions were concentrated *in vacuo* to give colorless needles of **2** (6.0 mg, quant.).

Acetylation of 1

A solution of 1 (10 mg, 0.060 mmol) in pyridine (3 ml) and acetic anhydride (1 ml) was stirred at room temperature for 5 hours. The mixture was diluted with $CHCl_3$ and washed successively with 1 N hydrochloric

acid, water, and brine. The organic layer was dried and concentrated *in vacuo* to give an oily residue. The oily residue was chromatographed on a silica gel column, eluting with CHCl₃-MeOH (5:1). Fractions containing the major product were concentrated *in vacuo* and the residue was applied on Sephadex LH-20. After elution with MeOH, the pure fraction was concentrated *in vacuo* to give 3 (14.5 mg, 97%) as pale yellow crystals: MP 86°C; FAB-MS (positive) m/z 253 (M+H)⁺, 223 (M+H-NO)⁺; UV λ_{max}^{MeOH} nm (ε) 255 (39,525); ¹H NMR (CDCl₃, 270 MHz) δ 2.23 (3H, s), 2.32 (3H, s), 3.05 (3H, s), 7.18 ~ 7.28 (3H, m); IR v_{max} cm⁻¹ 1765, 1505, 1460, 1170.

References

- IMOTO, M.; H. KAKEYA, T. SAWA, C. HAYASHI, M. HAMADA, T. TAKEUCHI & K. UMEZAWA: Dephostatin, a novel protein tyrosine phosphatase inhibitor produced by *Streptomyces*. I. Taxonomy, isolation and characterization. J. Antibiotics 46: 1342~1346, 1993
- LOONEY, C. E.; W. D. PHILLIPS & E. L. REILLY: Nuclear magnetic resonance and infrared study of hindered rotation in nitrosoamines. J. Am. Chem. Soc. 79: 6136~6142, 1957